목록[논문 정리]/[ilya's paper list] (2)
TechY
논문 : 링크 residual network 의 수식 표현은 아래와 같다.$y_l = h(x_l) + F(x_l, W_l)$$x_{l+1} = f(y_l)$ residual learning을 처음 제시했던 논문 에서는 $h$ 는 identity mapping 이었고, $f$ 는 ReLU 였다.해당 논문에서는 $h, f$ 를 identity 로 만드는 것이 최적화를 쉽게 만들어주고 이에 따른 모델 성능 부스트에 효과적임을 보인다. 우선 $h, f$ 를 identity 로 만드는 것이 최적화를 쉽게 만들어주는 것에 대한 수식적 접근을 보면 아래와 같다. 위에 쓴 식에서 $h, f = \mathbb{I}$ 라고 하면 아래와 같이 단순해진다.$x_{l+1} = x_l + F(x_l, W_l)$ 이 식은 일종의 ..
논문 : 링크문제 인식neural network 의 깊이가 깊어질 때, 어느 정도 높아지다가 일정 수준에서 성능 감소가 발생하는 degradation 이 있음.저자는 이를 overfitting 의 이슈로 보지 않음. 그 이유는 test 뿐만 아니라 training 에서도 그 error 가 상승하기 때문, 이에 따라 저자는 모델의 깊이가 깊어질 수록 최적화의 난이도가 함께 변화한다고 보았음. 방법 제안저자는 $n$ th layer 까지 학습한 representation 이 있고, $n+1$ th layer 를 추가했을 때 해당 layer 가 identity mapping 이라면 $n$ th layer network 보다 성능이 나빠지지 않아야 한다는 것으로 시작했다. 또한 이전 layer (shallowe..